SUBJECTIVE SOLVED EXAMPLES

Example - 1 A polyvalent metal weighing 0.1 gm and having atomic weight of 50 reacted with dilute H_2SO_4 to give 44.8 mL of hydrogen at STP. The solution containing the metal in this Lower oxidation state, was found to require 60 mL of 0.1 N KMnO₄ solution for complete oxidation. What are valencies of metal?

SOLUTION:

Metal (M) +
$$H_2SO_4 \longrightarrow H_2$$

$$44.8 \text{ mL } H_2 \text{ at STP} = \frac{44.8}{22400} \text{ moles of } H_2$$

Now, meq of M = meq of H,

Note: For Hydrogen $2H^+ + 2e^- \longrightarrow H_2$

meq of $H_2 = 2 \times m$.moles of H_2

$$\Rightarrow \frac{0.1}{50/x} = \left(\frac{44.8}{22400}\right) \times 2 \Rightarrow x = 2$$

Thus, $M \longrightarrow M^{x+} + xe^-$, i.e., oxidation state is +2

Now $\mathrm{M^{2+}}$ will acquire higher oxidation state when oxidised by $\mathrm{KMnO_4}$

$$M^{2+} \longrightarrow M^{2+n} + ne^{-}$$

 $meq of M^{2+} = meq of KMnO_4$

$$\frac{0.1}{50/n} \times 1000 = 0.1 \times 60 \qquad \Rightarrow \qquad n = 3$$

So oxidation state of M is $M^{2+n} \equiv M^{+5}$

Hence the possible valencies are +2, +5.

Example - 2 Hydroxylamine (NH_2OH) reduces Fe^{3+} as per following reaction:

$$NH_2OH + Fe^{3+} \longrightarrow N_2O + H_2O + Fe^{2+}$$

 Fe^{2+} produced is estimated by titration with KMnO₄. A 10 mL sample of NH₂OH is diluted to 1000 mL. 50 mL of this diluted sample is boiled with excess of Fe^{3+} solution. The resulting solution required 12 mL of 0.02 M KMnO₄ for complete oxidation. Determine the strength of NH₂OH.

SOLUTION:

Consider 50 mL sample:

$$NH_2OH + Fe^{3+} \longrightarrow Fe^{2+} + N_2O$$

meq of $NH_2OH \equiv meq$ of $Fe^{3+} \equiv meq$ of Fe^{2+}

Now meq of Fe^{2+} ions are calculated by titrating it against $KMnO_4$.

 $meq of Fe^{2+} = meq of KMnO_4$

Now for calculating meq. of KMnO₄, convert molarity (M) into normality (N).

$$N = xM = 5 \times 0.02 = 0.10 \text{ N}$$

$$(x = 5; MnO_4^- + 5e^- \longrightarrow Mn^{2+})$$

meq of Fe²⁺ in 50 mL sample = 0.10×12

$$= 1.2 = \text{meq of NH}_2\text{OH}$$

meq of NH₂OH in 1000 mL sample = $1.2 \times 20 = 24$

Now meq. of NH_2OH in original 10 mL = 24

(meq. remain same on dilution)

Now find grams of NH₂OH using $\frac{g}{E} \times 1000 = 24$

$$2 \text{ NH}_2\text{OH} \longrightarrow \text{N}_2\text{O} + \text{H}_2\text{O} + 4\text{H}^+ + 4\text{e}^-$$

Now,
$$x = \frac{4}{2}$$
 for 1 mole of NH₂OH

$$\Rightarrow$$
 $E_{NH_2OH} = \frac{33}{2}$

$$\Rightarrow g = \frac{24 \times (33/2)}{1000} = 0.396$$

 $10 \,\mathrm{mL} \,\mathrm{sample} \equiv 0.396 \,\mathrm{grams}$

$$\Rightarrow$$
 1000 mL = 39.6 grams

$$\Rightarrow$$
 Strength of NH₂OH = 39.6 g/L

A sample of Pyrolusite (MnO_2) weighs 0.5 gm. To this solution 0.594 gm of As_2O_3 and a dil. acid are added. After the reaction has ceased, As^{3+} in As_2O_3 is titrated with 45 mL of M/50 KMn O_4 solution. Calculate the % age of MnO_{γ} in pyrolusite.

SOLUTION:

$$MnO_2 + As_2O_3 \longrightarrow Mn^{2+} + AsO_4^{3-}$$

0.5 gm 0.594 gm

For excess of As_2O_2 :

$$As_2O_3 + MnO_4^- \longrightarrow Mn^{2+} + AsO_4^{3-}$$

$$E_{As_2O_3} = ?$$
 $As_2O_3 \longrightarrow AsO_4^{3-}$

$$(As_2O_3 + 5H_2O \longrightarrow 2AsO_4^{3-} + 10H^+ + 4e^-)$$

For 1 mole of As_2O_3 , x = 4

$$\Rightarrow \qquad E_{As_2O_3} = \frac{198}{4}$$

meq of
$$As_2O_3$$
 taken = $\frac{0.594}{198/4} \times 1000 = 12$

meq of excess
$$As_2O_3$$
 = meq of KMnO₄
= 45 [1/50×5] = 4.5

$$MnO_4^- + 5e + 8H^+ \longrightarrow Mn^{2+} + 4H_2O \quad (x=5)$$

Note that the number of electron transfer for As₂O₃ in two reactions is same.

so meq of As_2O_3 used for $MnO_2 = 12 - 4.5 = 7.5$

meq of $MnO_2 = 7.5$

$$\Rightarrow \frac{g}{87/2} \times 1000 = 7.5$$

$$(MnO2 + 4H+ \longrightarrow Mn2+ + 2H2O; x = 2)$$

$$\Rightarrow g = 0.326$$
% MnO₂ = $\frac{0.326}{0.5} \times 100 = 65.25\%$

Example - 4 $\int 1$ gm of Fe_2O_3 solid of 55.2 % purity is dissolved in acid and reduced by heating the solution with Zn dust. The resultant solution is cooled and made upto 100 mL. An aliquot of 25 mL of this solution, requires 17 mL of 0.0167 M solution of an oxidant. Calculate the number of electrons taken up by the oxidant in the above reaction.

SOLUTION:

$$Fe_2O_3 + Zn \longrightarrow Fe^{2+} \longrightarrow 100 \text{ mL solution}$$

25 mL sample \equiv 17 mL of 0.0167 M of an oxidant.

Let 'n' be the number of electrons taken up by oxidant

Now meq of Fe^{2+} in 25 mL = meq of oxidant

$$= [0.0167 \times n] \times 17$$
 $[N = xM]$

meq of Fe²⁺ in 100 mL = $[0.0167 \times n \times 17] \times 4$

Also meq of $Fe_2O_3 = meq$ of Fe^{2+} in 100 mL

meq of
$$Fe_2O_3 = \frac{0.552}{E} \times 1000 = (0.0167 \times 68) \text{ n}$$

$$E_{Fe_2O_3} = ?$$

1 mole of $Fe_2O_3 \equiv 2Fe^{3+}$; $Fe^{3+} + 1e^{-} \rightarrow Fe^{2+}$

$$\Rightarrow$$
 $x = 2$ for 1 mole of Fe₂O₃

$$\Rightarrow \qquad E_{\text{Fe}_2\text{O}_3} = \frac{160}{2} = 80$$

$$\Rightarrow$$
 $n = \left(\frac{0.552}{80} \times 1000\right) \div (0.0167 \times 68) = 6$

Electrons taken by oxidant = 6

Example - 5 An equal volume of a reducing agent is titrated separately with 1 M KMn O_{Δ} in acid, neutral and alkaline $media.\ The\ volumes\ of\ KMnO_4\ required\ are\ 20\ mL\ in\ acid,\ 33.4\ mL\ in\ neutral\ and\ 100\ mL\ in\ alkaline\ media.\ Find\ out\ the$ oxidation state of manganese in each reduction product. Give the balanced equations for all the three half reactions. Find out the volume of 1 M $K_2Cr_2O_2$ consumed, if the same volume of the reducing agent is titrated in an acid medium.

SOLUTION:

Let meq of RA = P (Since equal volume of RA is used in all cases, meq in each case are same.)

1 M KMnO₄

(a)
$$MnO_4^- + xe^- + H^+ \longrightarrow Mn^{7-x}$$

volume of $KMnO_4 = 20 \text{ mL}$

(b)
$$\operatorname{MnO}_4^- + ye^- + \operatorname{OH}^- \longrightarrow \operatorname{Mn}^{7-y}$$

volume of $KMnO_4 = 100 \, mL$

(c)
$$\operatorname{MnO}_{4}^{-} + ze^{-} \longrightarrow \operatorname{Mn}^{7-z}$$

volume of $KMnO_4 = 33.4 \text{ mL}$

meq of $KMnO_4 = meq$ of RA in each case

(a)
$$P = x \times 1 \times 20$$

$$[N = xM]$$

(b)
$$P = v \times 1 \times 100$$

(c)
$$P = z \times 1 \times 33.4$$

$$\Rightarrow$$
 20 $x = 100 y = 33.4 z$

$$\Rightarrow$$
 $x:y:z\equiv 5:1:3$

Balanced half reactions are:

(a)
$$MnO_4^- + 5e^- \longrightarrow Mn^{2+}$$

(in acidic medium)

(b)
$$MnO_4^- + 1e^- \longrightarrow Mn^{+6}$$
 (in alkaline medium)

(c)
$$MnO_4^- + 3e^- \longrightarrow Mn^{+4}$$

Now this means P = 100 (in neutral medium)

meq of RA = meq of $K_2Cr_2O_7$

$$(Cr_2O_7^{2-} + 14 H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7 H_2O)$$

$$100 = 6 \times 1 \times V$$

$$\Rightarrow V = \frac{100}{6} = 16.67 \text{mL}$$

Note: Dil. Alkaline $KMnO_4$ should be considered as Neutral $KMnO_4$

Example - 6 20 mL of a solution containing oxalic acid and sulphuric acid on titration with 0.05 N NaOH required 40 mL of the base. 20 mL of same solution on titration with 0.02 N KMnO₄ required 50 mL of KMnO₄. Determine the strength of oxalic acid and H_2SO_4 .

SOLUTION:

In this problem, two type of titrations viz: Neutralisation and Redox are involved. Note that in both cases, the volume of sample is same, i.e., mmoles of two constituents are same in both.

Let x = mmoles of $H_2C_2O_4$ and y = mmoles of H_2SO_4 In first titration, both $H_2C_2O_4$ and H_2SO_4 react with base (as acids). [n-factor of both being 2 due to $2H^+$ per mole in each].

$$\Rightarrow$$
 2×x+2×y = meq of NaOH = 40×0.05 = 2

$$\Rightarrow$$
 $x + y = 1$

In second titration, only $H_2C_2O_4$ (being reducing agent) reacts with KMnO₄.

$$\Rightarrow$$
 2 × x = meq of KMnO₄ = 50 × 0.02 = 1

$$[H_2C_2O_4 \longrightarrow CO_2 + 2H^+ + 2e^-]$$

Note: In the above reaction H_2SO_4 also reacts with $KMnO_4$ but in the same reaction with $H_2C_2O_4$ so the meq. of H_2SO_4 should not be added separately. $[H_2C_2O_4 + KMnO_4 + H_2SO_4 \longrightarrow Mn^{2+} + CO_2]$

Hence x = y = 0.5 mmoles

$$\Rightarrow \frac{g_{\text{H}_2\text{C}_2\text{O}_4}}{M_{\text{H}_2\text{C}_2\text{O}_4}} \times 1000 = 0.5 \Rightarrow g = 0.045 \text{ gm}$$

Strength of
$$H_2C_2O_4 = \frac{0.045}{20/1000} = 2.25 \text{ g/L}$$

Similarly,
$$\frac{g_{\text{H}_2\text{SO}_4}}{\text{M}_{\text{H}_2\text{SO}_4}} \times 1000 = 0.5 \implies g = 0.049 \text{ gm}$$

Strength of
$$H_2SO_4 = \frac{0.049}{20/1000} = 2.45 \text{ g/L}$$

Example - 7 The neutralisation of a solution of 1.2 gm of mixture of $H_2C_2O_4$. $2H_2O$ and KHC_2O_4 . H_2O and some impurities which are neutral, consumed 40.0 mL of 0.25 N NaOH. On the other hand, on titration with $KMnO_4$ in acidic medium, 0.4 gm of mixture required 40.0 mL of 0.125 N $KMnO_4$. Find the molar ratio of the components.

SOLUTION:

Note that the mass of two samples is different in two titrations.

Let $x = \text{mmoles of H}_2\text{C}_2\text{O}_4$. $2\text{H}_2\text{O}$ and $y = \text{mmoles of KHC}_2\text{O}_4$. H_2O in 0.4 g sample So mmoles of oxalic acid in 1.2 gm sample = 3x

mmoles of bioxalate in 1.2 gm sample = 3y

1. Neutralisation with NaOH:

and

meq of
$$H_2C_2O_4$$
. $2H_2O$ + meq of KHC_2O_4 . H_2O

$$= meq of NaOH$$
 $2 \times 3x + 1 \times 3y = 0.25 \times 40$
[oxalic acid has $2H^+$ ions while bioxalate has only $1H^+$]
$$\Rightarrow 2x + y = \frac{10}{3} \qquad \cdots \qquad (i)$$

2. Redox reaction with KMnO₄:

$$\begin{aligned} \operatorname{meq} & \operatorname{of} \operatorname{H}_2\operatorname{C}_2\operatorname{O}_4.2\operatorname{H}_2\operatorname{O} + \operatorname{meq} \operatorname{of} \operatorname{KHC}_2\operatorname{O}_4.\operatorname{H}_2\operatorname{O} \\ &= \operatorname{meq} \operatorname{of} \operatorname{KMnO}_4 \\ 2\times x + 2\times y = 0.125\times 40 \end{aligned}$$

$$\begin{bmatrix} \operatorname{HC}_2\operatorname{O}_4^- & \longrightarrow 2\operatorname{CO}_2 + \operatorname{H}^+ + 2\operatorname{e}^- \; ; \; x = 2 \\ \operatorname{and} & \operatorname{C}_2\operatorname{O}_4^{2-} & \longrightarrow 2\operatorname{CO}_2 + 2\operatorname{e}^- \; ; \; x = 2 \end{bmatrix}$$

$$\Rightarrow \quad x + y = 2.5 \qquad \text{(ii)}$$

$$\operatorname{Solve} & \operatorname{for} x \text{ and } y \text{ to get} \; : \quad x = \frac{5}{6} \text{ and } y = \frac{5}{3}$$

$$\Rightarrow \quad x : y = 1 : 2$$

Example - 8 A sample of $Fe_2(SO_4)_3$ and FeC_2O_4 was dissolved in H_2SO_4 . 40 mL of N/16 KMn O_4 were required for complete oxidation. After oxidation, the mixture was reduced by Zn/H_2SO_4 . On again oxidation by same KMn O_4 , 60 mL of it were required. Calculate the ratio of millimoles of $Fe_2(SO_4)_3$ and FeC_2O_4 .

SOLUTION:

Let $m.moles of Fe_2(SO_4)_3 = x$ and $m.moles of FeC_2O_4 = y$ $Fe^{3+} + 1e^- \longrightarrow Fe^{2+}$ $x \, mmol \, Fe_2(SO_4)_3 \equiv 2x \, mmol \, Fe^{3+} \equiv 2x \, meq \, Fe^{3+}$ $Fe^{2+} \longrightarrow Fe^{3+} + 1e^$ $y \, mmol \, FeC_2O_4 \equiv y \, mmol \, Fe^{2+} \equiv y \, meq \, Fe^{2+}$ $C_2O_4^{2-} \longrightarrow 2 \, CO_2 + 2e^$ $y \, mmol \, C_2O_4^{2-} \equiv 2y \, meq \, C_2O_4^{2-}$ $In \, the \, first \, titration$ $meq \, of \, KMnO_4 = meq \, of \, Fe^{2+} + meq \, of \, C_2O_4^{2-}$ Zn reduces whole of ${\rm Fe}^{3+}$ (${\rm Fe}^{3+}$: original and ${\rm Fe}^{3+}$ from ${\rm FeC_2O_4}$) to ${\rm Fe}^{2+}$

In the second titration

So total meq of Fe²⁺ = 2x + ymeq of KMnO₄ = meq of Fe²⁺ $1/16 \times 60 = (2x + y)$ $\Rightarrow 2x + y = \frac{60}{16} \Rightarrow x = \frac{70}{48}$ Ratio of millimoles = x : y = 7 : 4

 \Rightarrow

 $1/16 \times 40 = y + 2y$ (Fe³⁺ will not be oxidised further)

y = 40/48

Example - 9 A 4:3 molar mixture of Cu_2S and CuS was titrated with 200 mL of 0.75 M KMnO₄ in acidic medium producing SO_2 , Cu^{2+} . The SO_2 was boiled off and the excess of MnO_4^- was titrated with 175 mL of 1 M Fe^{2+} solution. Find the moles of CuS and Cu_2S in the original mixture.

SOLUTION:

Note that in Cu₂S, both Cu₂⁺ and S²⁻ will get oxidize

Let $x = \text{mmoles of } Cu_2S$; y = mmoles of CuS

$$\Rightarrow \quad \frac{x}{y} = \frac{4}{3} \quad \Rightarrow \quad 3x = 4y \qquad \qquad \dots (i)$$

Now, First find excess of KMnO₄

$$Fe^{2+} \longrightarrow Fe^{3+} + 1e^{-} \Rightarrow x = 1$$

and
$$MnO_4^- + 5e^- \longrightarrow Mn^{2+} \Rightarrow x = 5$$

meg of $Fe^{2+} = (1 \times 1) \times 175 = 175$

 \Rightarrow excess meq. of KMnO₄ = 175

Now, meq of KMnO₄ taken = $200 \times (0.75 \times 5) = 750$

$$\Rightarrow \text{meq of KMnO}_4 \text{ used for Cu}_2\text{S and CuS}$$
$$= 750 - 175 = 575 \text{ meq}.$$

$$\Rightarrow$$
 meq of Cu₂S + meq of CuS = 575(ii)

Oxidation of Cu₂S

$$Cu_2^+ \longrightarrow 2Cu^{2+} + 2e^-$$

$$S^{2-} \longrightarrow SO_2 + 6e^-$$

1 mole of
$$Cu_2S \equiv 8e^- \Rightarrow n - factor = 8$$

Oxidation of CuS

$$S^{2-} \longrightarrow SO_2 + 6e^-$$

1 mole of CuS
$$\equiv$$
 6e⁻ \Rightarrow n - factor = 6

Using (ii), $x \times 8 + y \times 6 = 575$

$$\Rightarrow \left(\frac{4}{3} \cdot y\right) \times 8 + y \times 6 = 575 \text{ [Using (i)]}$$

$$\Rightarrow$$
 $x = 46$ mmoles and $y = 34.5$ mmoles

Example - 10 25 mL of a solution of ferric alum $Fe_2(SO_4)_3$. $(NH_4)_2SO_4$.24 H_2O containing 2.41 gm of salt was boiled with iron when the reaction $Fe + Fe_2(SO_4)_3 \longrightarrow 3Fe(SO_4)$ takes place. The un-reacted iron was filtered off and the solution was treated with 0.1 N KMnO₄ in acidic medium. What is the titre value (vol. of KMnO₄) of KMnO₄? If Cu had been used in place of iron, what would have been titre value?

SOLUTION:

 $Fe + Fe_2(SO_4)_3 \longrightarrow 3 FeSO_4$

1 mole of $Fe_2(SO_4)_3 \equiv 3$ moles of $FeSO_4$

1 mole of $Fe_2(SO_4)_3.(NH_4)_2SO_4.24 H_2O$

= 1 mole of Fe (SO)

$$\frac{2.41}{964} \text{ moles of salt} = \frac{2.41}{964} \text{ mole of Fe}_2(SO_4)_3$$

$$\equiv \frac{3 \times 2.41}{964}$$
 moles of FeSO₄.

Now, meq of $FeSO_4 \equiv meq$ of $KMnO_4$.

$$\left(\frac{3 \times 2.41}{964}\right) \times 1000 = 0.1 \times V$$

$$(Fe^{2+} \longrightarrow Fe^{3+} + 1e^{-}; x = 1)$$

$$\Rightarrow$$
 V = 75 mL

 \therefore Titre value = 75 mL

If Cu were used in place of Fe

$$Cu + Fe_2(SO_4)_3 \longrightarrow 2 FeSO_4 + CuSO_4$$

(only FeSO₄ reacts with KMnO₄)

$$\frac{2.41}{964}$$
 mol Fe₂(SO₄)₃ = 2 × $\frac{2.41}{964}$ mol FeSO₄

$$meq of FeSO_4 \equiv meq of KMnO_4$$

$$\Rightarrow \left(\frac{2 \times 2.41}{964}\right) \times 1 \times 1000 = 0.1 \times V$$

$$\Rightarrow$$
 V = 50 mL

$$\therefore$$
 Titre value = 50 mL

Example - 11 A solution of 0.2 gm of a compound containing cupric and oxalate ions on titration with 0.02 M potassium permanganate in presence of sulphuric acid consumes 22.6 mL of the oxidant. The resultant solution is neutralised with sodium carbonate, acidified with dil. acetic acid and treated with excess of KI. The iodine liberated required 11.3 mL of 0.05 M sodium thiosulphate solution for complete reduction. Find the mole ratio of two ions. Also write down the balanced redox reactions involved in the above titrations.

SOLUTION:

 ${\rm Cu^{2+}}$ ion can not be oxidised, so only ${\rm C_2O_4^{~2-}}$ will be oxidised by ${\rm KMnO_4}$.

$$5C_2O_4^{2-} + 2MnO_4^{-} + 16H^+ \longrightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

2 millimoles of $MnO_4^- \equiv 5$ millimoles of $C_2O_4^{2-}$ ions

 0.02×22.6 m.moles of MnO₄⁻ = 5/2 (0.02×22.6) m.moles = 1.13 m.moles of oxalate ions

Important:

$$Cu^{2+} + KI \longrightarrow Cu^{+} (not Cu^{0})$$

 $2 Cu^{2+} + 2I^{-} \longrightarrow I_{2} + 2Cu^{+}$

and
$$I_2 + 2S_2O_3^{2-} \longrightarrow 2I^- + S_4O_6^{2-}$$

2 millimoles of $S_2O_3^{2-} \equiv 1$ millimoes of I_2
 $(0.05 \times 11.3) \text{ mmol } S_2O_3^{2-} \equiv 1/2 (0.05 \times 11.3) \text{ mmol } I_2$
 $= 0.2825 \text{ mmol } I_2$
Also, $1 \text{ mmol } I_3 \equiv 2 \text{ mmol } Cu^{2+}$

Also,
$$1 \text{ mmol } I_2 \equiv 2 \text{ mmol } Cu^{2+}$$

$$0.2825 \text{ m.mol } I_2 \equiv 2 \times 0.2825 \text{ mmol } Cu^{2+}$$

$$= 0.565 \text{ mmol } Cu^{2+}$$

So, mole ratio of
$$\frac{\text{C}_2\text{O}_4^{\ 2-}}{\text{Cu}^{2+}} = \frac{1.13}{0.565} = 2$$

Example - 12 25 ml solution containing 6.35 g/L of K $H_3(C_2O_4)_2$. $2H_2O$ required V_1 ml of 0.1 N NaOH and V_2 ml of 0.1 N KMn O_4 in two separate titrations. Calculate V_1 and V_2 .

SOLUTION:

 $K H_3(C_2O_4)_2 . 2H_2O : M_0 = 254 gm / mol$

(a) meq of compound (as acid) \equiv meq of NaOH

$$25 \times N_a = V_1 \times 0.1$$

 \Rightarrow where $N_a = \frac{S}{E} = \frac{6.35}{254/3} = 0.075$

[Note: 3 acidic Hydrogens]

$$\Rightarrow$$
 $V_1 = \frac{25 \times 0.075}{0.1} = 18.75 \text{ ml}$

(b) meq of compound (as RA) = meq of $KMnO_4$

$$25 \times N_{RA} = V_2 \times 0.1$$

where
$$N_{RA} = \frac{S}{E} = \frac{6.35}{254/4} = 0.10$$

$$\Rightarrow V_2 = \frac{25 \times 0.1}{0.1} = 25 \text{ml}$$

[Note: n - factor = 4 due to 2 moles of $C_2O_4^{2-}$]

Example - 13 Three solutions, each of 100 ml containing 0.3M As_2S_3 , 4.5M NaOH and 4.5M H_2O_2 respectively were mixed to form AsO_4^{3-} and SO_4^{2-} as products.

- (i) Give a balanced redox equation.
- (ii) Calculate the molarity of each species left at the end of the reaction.
- (iii) If the above solution is allowed to stand for sometime, what volume of O_2 will be collected at STP?

SOLUTION:

(i) Given:
$$As_2S_3 + NaOH + H_2O_2 \longrightarrow AsO_4^{3-} + H_2O + SO_4^{2-}$$

Oxidation:
$$As_2^{3+} + 16OH^- \longrightarrow 2AsO_4^{3-} + 8H_2O + 4e^-$$
 ...(i)

$$S_3^{2-} + 24 \text{ OH}^- \longrightarrow 3 \text{ SO}_4^{2-} + 12 \text{ H}_2 \text{O} + 24 \text{ e}^-$$
 ... (ii)

Adding (i) and (ii), we get:
$$As_2^{3+} + S_3^{2-} + 40OH^- \longrightarrow 2AsO_4^{3-} + 3SO_4^{2-} + 20H_2O + 28e^-$$
 ... (iii)

$$\begin{array}{ccc} (\equiv As_2S_3) \\ \text{Reduction}: & H_2O_2 + 2e^- \longrightarrow 2OH^- \\ & & \dots \text{(iv)} \end{array}$$

Multiply (iii) by 1 and (iv) by 14 and add to get:

$$As_2S_3 + 12OH^- + 14H_2O_2 \longrightarrow 2AsO_4^{3-} + 3SO_4^{2-} + 20H_2O$$

(ii) Initial mmoles of $As_2S_3 = 0.3 \times 100 = 30$; Initial mmoles of NaOH = $4.5 \times 100 = 450$ Initial mmoles of $H_2O_2 = 4.5 \times 100 = 450$;

It is clear from the balanced equation and mmoles of reactants that As₂S₃ is the limiting reagent.

mmoles of NaOH left =
$$450 - 12 \times 30 = 90$$
 \Rightarrow $M_{NaOH} = \frac{90}{300} = 0.3 \text{ M}$

mmoles of
$$H_2O_2$$
 left = $450 - 14 \times 30 = 30$ \Rightarrow $M_{H_2O_2} = \frac{30}{300} = 0.1 M$

mmoles of AsO₄³⁻ formed =
$$2 \times 30 = 60$$
 \Rightarrow $M_{AsO_4^{3-}} = \frac{60}{300} = 0.2 M$

mmoles of
$$SO_4^{2-}$$
 formed = $3 \times 30 = 90$ \Rightarrow $M_{SO_4^{2-}} = \frac{90}{300} = 0.3 \text{ M}$

mmoles of H₂O formed =
$$20 \times 30 = 600$$
 \Rightarrow $M_{H_2O} = \frac{600}{300} = 2 M$

(iii) If a H_2O_2 solution is allowed to stand, it decomposes to give O_2 and H_2O .

$$H_2O_2 \longrightarrow H_2O + \frac{1}{2} O_2$$

Thus, mmoles of O_2 formed = $30 \times \frac{1}{2} = 15$

or, volume of
$$O_2$$
 at STP = $15 \times 22.4 \times 10^{-3} L = 0.336 L$ [: 1 mole of O_2 at STP = 22.4 L]